Prediction of Extreme & Fatigue Response of Flexible Pipe

Patrick O’Brien,
Group Director Strategic Business & Marketing, Wood Group Kenny
Presentation to cover the following points:

• Set the context for current work
 – Real Life and Sureflex JIPs
 – Recent industry findings

• Development in Fatigue Life Modelling

• Extreme Loading on Flexible Pipe
 – Birdcaging, armour wire disorganisation and buckling

• Conclusions
Acknowledge the work of my MCS Kenny colleagues:

- Annette Carty-Mole
- Adrian Connaire
- Ruairi Nestor
- John Smyth
- Rafael Fumis
SureFlex JIP Deliverables

The JIP produced two deliverables (End 2010):

• State of the Art Report on Flexible Pipe Integrity
 – Gathered data on flexible pipe population statistics, damage, degradation and failure mechanisms worldwide
 – Reviewed current integrity management practice
 – Reviewed developments in monitoring and inspection methods for flexible pipe

• Guidance Note on Monitoring Methods and Integrity Assurance for Flexible Pipe
 – Life cycle flexible pipe integrity assurance
 – Sources of flexible pipe degradation, damage and failure
 – Guidance on Inspection and Monitoring Techniques

• www.ukoilandgasuk.co.uk
 – Click on “Publications”
 – Code: OP010; Category: Operations; Keyword: Flexible Pipe
 – Cost: £50 for Members O&GUK, £100 for Non-Members
SureFlex Findings: Water Depth vs Internal Diameter

Operating Flexible Risers, Water Depth vs. ID

Experience that Delivers
SureFlex Findings: Pressure vs Internal Diameter
SureFlex Findings:
Failure / Damage Statistics

Flexible Pipe Failure/Damage Mechanisms

- 2002 UKCS and Norway only
- 2010 Worldwide

Failure / Damage Mechanism:
- others:
 - Smooth bore collapses
 - Pigging Damage
 - Upheaval Buckling
 - Excess Torsion
 - Excess Tension
 - Sheath cracking
 - Armourwire failure
Main recommendations from SureFlex are:

- Create a joined-up approach to S-N curve definition for corrosion fatigue and improve our methodology for corrosion fatigue assessment.
- Put more focus on and significantly improve our practice on annulus vent system design, commissioning and maintenance.
- Establish an industry consensus on failure mechanisms involved in tensile armour birdcaging and lateral buckling through discussion and information sharing between relevant stakeholders.
- Establish a mechanism for annual update of the “Guidance Note” document:
 - “Procedure – Industry Practice – Guidance Note” format is well established
 - Inspection and monitoring techniques are developing quickly now in response to demand
 - Need to capture latest industry experience and practice
Flexible Riser Fatigue: Real Life JIP
Completed 2006

• Objective
 – Establish an independent, consistent and transparent fatigue analysis methodology for flexible pipes

• JIP participants
 – Operators
 • BP, ExxonMobil, ChevronTexaco, Statoil, Petrobras, Shell, ConocoPhillips, Woodside
 – Flexible Pipe Suppliers
 • Flexi France, Wellstream, NKT

• Real Life achieved:
 – Robust Global Analysis Methodology (Effectively)
 – Provided insight into Global to local transposition
 • Time domain rainflow counting of wire stress
 – Produced a set of industry guidelines
 • Consistency and transparency
 • Implementation into API / ISO
 – Highlighting the importance of Hysteresis
Flexible Pipe Bending - Hysteresis

- **Stick-Slip Bending**
 - Tensile Armour initially sticks on reverse bending
 - Slip is **inline** with and transverse to lay-direction
 - Hysteretic fatigue stress

![Graph showing stress-strain relationship](image-url)

- **Regular Stress Cycle**
Wire Equations of Equilibrium
Layercom Methodology

\[
\frac{d\sigma_{11}}{ds} t + \sigma_{12,\text{tot}} = 0 \quad \text{Tangential}
\]

\[
\sigma_{11} t \kappa_n - \sigma_{22,\text{diff}} = 0 \quad \text{Surface Normal}
\]

\[
- \sigma_{11} t \kappa_t + \sigma_{32,\text{tot}} = 0 \quad \text{Transverse}
\]

- Method of Solution
 - Incremental curvature determines incremental non-slip axial stress
 - Incremental non-slip axial stress determines incremental tangential shear, normal interface and transverse shear stresses
 - Check Coulomb law and gradually relax stresses while retaining equilibrium
 - Wire curvatures from loxodromic / geodesic equations
Friction-Induced Stress
Layercom Methodology

- Structural Model for Friction – Irregular Loading

Pipe Bending Curvature

Wire Stress

Hysteresis Loop
3D (out-of-plane) Irregular Seas

Layercom Methodology

3D Pipe Bending in Irregular Seas
Hs = 2m, Tp = 13s, 15deg off-bow
Global Tension (left) and Curvature (right) Responses

Experience that Delivers
3D (out-of-plane) Irregular Seas

Layercom Methodology

3D Pipe Bending in Irregular Seas
Hs = 2m, Tp = 13s, 15deg off-bow

Armour Total Stress at 8 Equally Spaced Positions on the Cross Section

Experience that Delivers
• Single tensile armour wire in isolation

• Wire constrained between cylindrical surfaces
 – Apply curvature to cylindrical surfaces

• Compare FE results with:
 – Theoretical wire-curvature models
 – Analytical Tools
 • Layercom
Wire Deformation Path under Bending – Fatigue Stress

Applied end rotation (both ends)

View 1

View 2

Original Wire Position

Frictionless Contact

neutral

Axis

Resultant Axial Displacement of Wire - Principle Wire Stress for Fatigue Calculation
• Theoretical models for wire curvature change for a given pipe curvature

• Normal and Transverse Components of curvature change
• Theoretical models for wire curvature change for a given pipe curvature

• Normal and Transverse Components of curvature change
• Theoretical models for wire curvature change for a given pipe curvature

• Normal and Transverse Components of curvature change
 – Witz & Tan
 – Saevik
 – MCSK Loxodrome
Transverse Delta-Curvature Comparison

![Graph showing transverse curvature comparison with angular position for different methods: MCS Loxodrome, Saevik, Witz & Tan, and Abaqus/Standard.](image)
Normal Delta-Curvature Comparison

Angular Position [degrees]

Normal Curvature [1/m]

-0.01 -0.005 0 0.005 0.01

0 50 100 150 200 250 300 350 400

MCS Loxodrome
Saevik
Witz & Tan
Abaqus/Standard

Experience that Delivers
Verification – Single Wire Sliding Model Set-up

- Wire plus Inner and outer cylindrical slivers
- Curvature enforced by displacing cylinders in pipe curvature

Applied displacement at each node (both cylinders)

Tensile Armour Wire
Each Layer Modelled Explicitly –
Contact, Friction, Lock-in

Experience that Delivers
Flexible Pipe Fatigue

Ongoing Industry Efforts

• Continue to improve analysis models
• Set standard methodology for armour wire testing and S-N curve development
 – Marintek JIP
 – Step towards transparency
• Manufacturers further evaluating annulus environment
• Most likely we are conservative in our fatigue predictions
 – Recent OTC Brazil 2011 paper by Charlesworth, D’All, et al
 › Performed fatigue testing of armour wires in bend stiffener region
 › After 10 year operation West of Shetlands, armour wires in near pristine condition, with very little fatigue damage
Birdcaging

- Radial buckling mode of the tensile wires
 - High compression loads
 - Bending
 - Reverse End Cap
 - Local deformation of individual wires about wire ‘weaker’ axis
Armour Wire Disorganisation & FE Models
Armour Wire Disorganisation

Experience that Delivers
Good comparison with experimental results:

Finite Element Model
Key Conclusions are:

- Considerable step-up in capability to model the complex cross-section of flexible pipe

- This has contributed to improved prediction of:
 - Flexible riser fatigue life
 - Armour wire disorganisation
 - Birdcaging
 - Latter two points important for deepwater application (Sureflex JIP)

- Need continued efforts across industry to rationalise fatigue life predictions with a consistent, transparent approach

- Finite Element Analysis work is being validated against test data
Umbilical / Flexible Suite of Models
Thank you

Any questions?