Use of Underwater Dry Welding for In-Situ Repair to Offshore Structures

Sabine Powell
engineering@neptunems.com
02/12/2016
In-Situ Welding

- Steel Structures

- Suitability of Repair Methods

- Mobile Offshore Units
 - Dry Docking Schedule (Inspection and Repair)
 - Underwater Inspection In-Lieu of Dry Dock (UWILD)

- Fixed Offshore Units
Difficulties in Welding

- Welding Challenges
- Diver and Operational Challenges
Welding Challenges

- Water
 - Rapid Cooling Rates
 - Hydrogen
 - Cracking

- Ambient Pressure
 - Porosity

- Material
 - Higher carbon content (Older)
 - Alloyed Steels

Operational Challenges

- Welder Challenges
 - Environment
 - Sea state and current
 - Visibility
 - Weld Location
 - Access to Weld Area
 - Fatigue
 - Technique

- Repair Time Challenges
 - Diving weather window
 - Depth limited dive time
Welding Codes

- Welding Procedure Specification

- Classification Body Codes
 - DNV GL
 - ABS
 - Lloyd’s Register
 - Bureau Veritas

 - Weld Classification
 - Class A – suitable for comparable applications to surface welding
 - Class B – suitable for less critical applications and fitness for purpose
 - Class O – meet additional code or standard requirements
Welding Procedure Specification

A document which outlines the steps to be followed to produce a weld with the required properties.

Some Essential Variables:

- Depth
 - Ambient Pressure
- Steel chemical composition (Carbon and Carbon Equivalent)
 - Hardenability (350HV10)
- Welding consumables
- Pre- and Post- Heating
Weld Classes

<table>
<thead>
<tr>
<th></th>
<th>Class A</th>
<th>Class B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual Inspection / Surface Inspection</td>
<td>No visible cracks, porosity, or inclusions</td>
<td>No visible cracks</td>
</tr>
<tr>
<td></td>
<td>Maximum undercut 1.5mm</td>
<td>Maximum undercut 3mm</td>
</tr>
<tr>
<td>Material Properties</td>
<td>Weld metal yield and tensile strength to meet or exceed base material specification</td>
<td>Weld metal tensile strength to meet or exceed base material specification</td>
</tr>
<tr>
<td></td>
<td>Hardness below 325HV10</td>
<td>Hardness below 375HV10</td>
</tr>
<tr>
<td></td>
<td>For specified tensile strength below 485MPa, average impact of 27J (minimum 14J)</td>
<td>For specified tensile strength below 485MPa, average impact of 20J (minimum 14J)</td>
</tr>
<tr>
<td>Non-Destructive Testing</td>
<td>Radiographic Testing</td>
<td>Radiographic Testing</td>
</tr>
<tr>
<td></td>
<td>Ultrasonic Testing</td>
<td></td>
</tr>
</tbody>
</table>
Methods of Underwater Welding

Wet Welding
- Welding arc and weld is not separated from the water

Dry Spot Welding – NEPSYS
- Weld is separated from the water
- Diver is separated from the water

Hyperbaric Welding
- Weld is separated from the water
- Diver is not separated from the weld
Welding Method Comparison

<table>
<thead>
<tr>
<th></th>
<th>Wet</th>
<th>Dry Spot (NEPSYS)</th>
<th>Hyperbaric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Quality</td>
<td>Class B</td>
<td>Class A</td>
<td>Class A</td>
</tr>
<tr>
<td>Repair Depth</td>
<td>Achieved up to 100m</td>
<td>Achieved up to 60m</td>
<td>Achieved up to 400m</td>
</tr>
<tr>
<td>Repair Materials</td>
<td>Carbon Content $<0.1%$, and Carbon Equivalent $<0.37%$</td>
<td>Restrictions comparable to surface welding</td>
<td>Restrictions comparable to surface welding</td>
</tr>
<tr>
<td></td>
<td>Limited wet welding specific electrodes</td>
<td>Variety of electrodes may be used</td>
<td>Variety of electrodes may be used</td>
</tr>
<tr>
<td>Application</td>
<td>Almost nil restrictions to weld area geometry</td>
<td>Some restrictions due to habitat size and weld area geometry</td>
<td>Restrictions due to chamber size and weld area geometry</td>
</tr>
<tr>
<td>Safety</td>
<td>Welder mobility</td>
<td>Welder mobility</td>
<td>Separation of Welder and water</td>
</tr>
<tr>
<td></td>
<td>Separation of Welder and weld</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Typical Commercial Comparison

<table>
<thead>
<tr>
<th></th>
<th>Wet</th>
<th>Dry Spot (NEPSYS)</th>
<th>Hyperbaric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualification and Set Up</td>
<td></td>
<td>Weld and Welder qualification</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Small habitat design / fabrication</td>
<td>Large chamber design / fabrication</td>
</tr>
<tr>
<td>Project Mobilisation</td>
<td></td>
<td>Personnel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diving spread</td>
<td></td>
</tr>
<tr>
<td>Welding equipment and consumables</td>
<td>Welding / habitat equipment and consumables</td>
<td>Welding / chamber equipment and consumables</td>
<td></td>
</tr>
<tr>
<td>Operations</td>
<td></td>
<td>Vessel / personnel</td>
<td></td>
</tr>
<tr>
<td>Welding speed comparable to surface welding</td>
<td>Habitat set up / removal by divers</td>
<td>Chamber set up / removal by vessel crane</td>
<td></td>
</tr>
<tr>
<td>Reduced Welding Speed</td>
<td></td>
<td>Welding speed comparable to surface welding</td>
<td></td>
</tr>
</tbody>
</table>
Typical Commercial Comparison

<table>
<thead>
<tr>
<th></th>
<th>Wet</th>
<th>Dry Spot (NEPSYS)</th>
<th>Hyperbaric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualification and Set Up</td>
<td>Days to Weeks</td>
<td>Weeks to Months</td>
<td>Months</td>
</tr>
<tr>
<td>Low Cost</td>
<td>Medium Cost</td>
<td>High Cost</td>
<td></td>
</tr>
<tr>
<td>Project Mobilisation</td>
<td>Days to Weeks</td>
<td>Days to Weeks</td>
<td>Weeks</td>
</tr>
<tr>
<td>Low Cost</td>
<td>Low to Medium Cost</td>
<td>High Cost</td>
<td></td>
</tr>
<tr>
<td>Operations</td>
<td>Small Vessel</td>
<td>Small Vessel</td>
<td>Larger Vessel including crane</td>
</tr>
<tr>
<td>Low number of dives</td>
<td>Medium number of dives</td>
<td>Low number of dives</td>
<td></td>
</tr>
</tbody>
</table>
Habitat which isolates the weld area is designed.
- Accommodates the geometry of the area surrounding the weld
- Incorporates windows for visibility and access to the weld

Heated gas displaces the water, creating a dry, protected environment for welding

Welding Rods are coated and hermetically sealed to protect from the environment before being used in welding
Case Study - NEPSYS System

Area to be welded inspected
Prepare area per WPS
Conduct NEPSYS® Weld

Completed NEPSYS® Weld

Install NEPSYS® Habitat
Dewater NEPSYS® Habitat
NEPSYS® Welding
Weld Inspection
Case Study

- 1.5m diameter raked pile
- Approximately 25% of the circumference was damaged at -17m LAT
- Damage to the underside of the pile
- Contacted by client in August
- Grouting of piles in October

Options for repair:
- Removal and Re-piling
- Clamp
- Repair Patch via wet weld
- Reinstatement of Material via dry welding
Welding Qualification

- Base Steel had high Carbon Content 0.18% (CE 0.44%)
- Initial Hardness Testing – Maximum 276HV10

- Weld preparation designed to minimise welding time
- Procedure qualification in the Vertical and Overhead positions over three weeks
- Qualification in Perth witnessed by third party
- Multiple welder qualification
Insert Plate and Habitat Design

- Insert plate design adapted for damage profile, welding procedure
- Habitat design adapted for insert plate profile
- Habitat fabrication (one week)

- Removal of damaged area via water jetting which left edges suitable for welding
- Insert plate installation allowed progression of grouting works
Mobilisation from Perth to Queensland of NEPSYS equipment and personnel
Operations conducted with local dive spread
Diving from the back of a 15m work boat
Nitrox mixture used to ensure longer dive times at the repair depth
Four qualified welders
Approximately 45 hours of welding
2800mm of weld in 16mm plate
Results

- Weld ground flush to the pile
- No surface defects found via Magnetic Particle Inspection or Creep Wave Ultrasonic Testing
- No subsurface defects found via Shear Wave Ultrasonic Testing or Time of Flight Diffraction
- Damaged area fully removed from the pile and reinstated
- Design strength of the pile restored
NEPSYS® Summary

Permanent Integral Welded joints

Diver remains outside of habitat resulting in a **Safer work** environment

No need to remove assets from the water, or to use temporary repairs

Habitats designed for **Flexible Geometry** scenarios
Conclusion

- In-situ repair options

- Suitability of Welding Methods

- Questions?