Learning and Development from the World’s First Operating Subsea Compression System

Kuala Lumpur, 12th July, 2017
Salvatore Micali, Senior Manager Front End APAC
Content

■ Introduction

■ Åsgard subsea compressor project
 ■ Design and project execution
 ■ Operation
 ■ Learnings

■ Next generation of subsea compression systems

■ Summary
Aker Solutions creates solutions to unlock energy safely and sustainably for future generations

14,000 EMPLOYEES
20 COUNTRIES
46 LOCATIONS
175 YEARS OF EXPERIENCE
Introduction
Subsea gas compression – the benefits

Relocating topside compression on the seabed, close to the reservoir, provides for a number of benefits:

- Enables **cost effective** development
- Provides for **increased total recovery**
- Enables for **accelerated production** and greater up-front return
- Enables **longer tie-back**
- Enables the use of **smaller pipeline**
- Replaces the need for topside manning
- Provides **flexibility** in flow assurance philosophies (avoid liquid accumulation)
- Reduces **carbon footprint**
Basic principles of gas volume & density

\[\Delta p := k \cdot \rho \cdot Q^2 \]

- Pressure drop in the flowline / riser depend on the density and the square of the volume
- Placing the compressor upstream the flowline/riser will give the lowest wellhead pressure
Subsea gas compression – long term commitment

- 1985
 - Kværner Booster Station
- 1989-1993
 - Demo 2000 GasBooster™ Qualification
- 2001-2003
 - Ormen Lange Pilot Qualifications and EPC
- 2004-2011
 - Ormen Lange Compression System Testing at Nyhamna
- 2011-2013
 - Åsgard Subsea Compression system EPC
- 2010-2015
 - Well Stream Compression (WSC)
 - Conventional Compression System
- 2015 ->
Åsgard subsea compression project
Åsgard field layout and scope of supply

Compression station

Topside power & control module

Manifold station
Åsgard subsea compression – project details

Project details
- Water depth: 260 m
- Tie-back distance: 40 km
- Flow rate: 21 MSm3/d
- Power: 2 x 11.5 MW
- Shut in pressure: 220 bar
- IOR: **306 million** barrels of oil equivalent

Project schedule
- 2006 - 2010: studies, Pre-FEED, FEED
- 2010: EPC contract (1st December)
- 2013: equipment and modules testing
- 2014: SIT and FUT
- 2015: delivery and start-up (16th of September)
Åsgard subsea compression – process
Åsgard subsea compression – process details

- Multiphase Cooler
- Gas-Liquid Separator
- Gas Compressor
- Condensate Pump
- Discharge Cooler
Åsgard subsea compression – design challenges

Replacement of the a conventional platform

Subsea compression system shall be **ROBUST**, with high **system availability** or uptime
Solution selected – robustness within the design

1) Meticulous equipment selection and quality follow up
2) Redundancy on components (eg. sensors, jumper)
3) Modularization design – enable efficient repair & replacement
Excellent operational performance

- Accumulated running hours to June 2017: more than 25,000 in total (T1+T2)
- Increased production during the first year of operation = 16 million barrels of oil equivalent
- Producing more condensate than expected
- Very low vibrations
- No trips / shutdown caused by the subsea compression system
- >99% availability for the subsea system
Excellent operational performance – details

Subsea compression availability:
- 2015 – 99.27%
- 2016 – 99.99%
- 2017 – 99.97%

Operation time with peak machine load in the latest 12 months:
- T1 – 90%
- T2 – 85%

Courtesy of Statoil
Lessons learnt

Lessons learnt

- Total system responsibility
 - Managing technology qualifications
 - Integrating core technologies in the system
 - Designing, manufacturing and testing
- Early cooperation with installation contractor
- Core team retention and development

Going forward

- Optimization by challenging requirements
- Rationalization of the capital spare parts
- Simplification of the testing philosophy
Next generation subsea compression systems
Subsea Compression – Now and the Future

Åsgard System (SCS 1.0)
- Åsgard-like SSC
- 13 subsea modules
- Similar modularisation and layout philosophy
- Over-trawlable structure
- Proven technology & setup

Today (SCS 2.0)
- Optimisation with Åsgard technology, core components & functionality
- Up to 50% reduction in total size and weight
- 13 → 7 module subsea
- Lighter compressor module
- Able to be fitted in to a 4-slot subsea template

Future (Wellstream Compression)
- Further optimisation of the SCS 2.0 system
- Utilises liquid tolerance properties of MAN HOFIM compressor
- Eliminate the need of scrubber and pump
- Able to handle up to 30wt% liquid (95% GVF)
Subsea Well Stream Compression (WSC) system vision

- A robust, high capacity compression system that can handle wellstream conditions without scrubber and pump

- Design and operation philosophy
 - Liquid tolerant compressor handles normal liquid production
 - System design w/FCU handle upset conditions and transients
Summary

- The subsea compression system installed at Åsgard is approaching 2 years of successful operation.
- This is not only a technology leap, but it represents also a strong business case.
- The learnings from the first project will allow to improve the next generation of subsea compression.
- APAC could be one of the next offshore gas region to benefit from this technology.
Copyright and Disclaimer

Copyright
Copyright of all published material including photographs, drawings and images in this document remains vested in Aker Solutions and third party contributors as appropriate. Accordingly, neither the whole nor any part of this document shall be reproduced in any form nor used in any manner without express prior permission and applicable acknowledgements. No trademark, copyright or other notice shall be altered or removed from any reproduction.

Disclaimer
This Presentation includes and is based, inter alia, on forward-looking information and statements that are subject to risks and uncertainties that could cause actual results to differ. These statements and this Presentation are based on current expectations, estimates and projections about global economic conditions, the economic conditions of the regions and industries that are major markets for Aker Solutions ASA and Aker Solutions ASA’s (including subsidiaries and affiliates) lines of business. These expectations, estimates and projections are generally identifiable by statements containing words such as “expects”, “believes”, “estimates” or similar expressions. Important factors that could cause actual results to differ materially from those expectations include, among others, economic and market conditions in the geographic areas and industries that are or will be major markets for Aker Solutions’ businesses, oil prices, market acceptance of new products and services, changes in governmental regulations, interest rates, fluctuations in currency exchange rates and such other factors as may be discussed from time to time in the Presentation. Although Aker Solutions ASA believes that its expectations and the Presentation are based upon reasonable assumptions, it can give no assurance that those expectations will be achieved or that the actual results will be as set out in the Presentation. Aker Solutions ASA is making no representation or warranty, expressed or implied, as to the accuracy, reliability or completeness of the Presentation, and neither Aker Solutions ASA nor any of its directors, officers or employees will have any liability to you or any other persons resulting from your use.

Aker Solutions consists of many legally independent entities, constituting their own separate identities. Aker Solutions is used as the common brand or trade mark for most of these entities. In this presentation we may sometimes use “Aker Solutions”, “we” or “us” when we refer to Aker Solutions companies in general or where no useful purpose is served by identifying any particular Aker Solutions company.