Best Practice for Management of Pipeline Integrity by Pigging

12th February 2015

Paul Otway
Senior Subsea Engineer, Jee Limited
Agenda

- Pigging: What, why and when?
- Pipeline inspection by MFL tools
- Pipeline inspection by UT tools
- ILI tool selection
What is ILI and why use it?

- **In-line inspection**
 - Method of collecting wall thickness or metal loss data to enable assessment of pipeline fitness for purpose

- **ILI can provide information on**
 - General and local wall thickness / metal loss
 - Corrosion
 - Cracks
 - Laminations
 - Weld defects

- **Best practice for management of pipeline condition**
 - Often in conjunction with operational pigging
Operational pigging

- **Management of internal condition to reduce risk**
- **Sphering**
 - Liquid sweep in gas lines
 - Spreading inhibitors
- **Cleaning**
 - Removal of debris e.g. wax
When to do ILI?

- **Installation and commissioning**
 - Baseline inspection

- **Design operational life**
 - Regular re-inspection (frequency is risk-based)

- **Extended operational life**
 - Validation for lifetime extension
 - Re-validation

- **Decommissioning**
 - Operational pigging throughout lifecycle if required
Pipeline piggability

- Not all pipelines are suitable for pigging
- Availability of suitable facilities and pig traps is critical
- Bore range
 - Single diameter preferable
 - Multi-diameter lines can be piggable, often need bespoke tools
- Minimum bend radii
 - 5D preferred
 - 3D possible with most tools
 - 1.5D possible with a few tools
- Pipeline features and restrictions
 - Back to back bends
 - Valves
 - Offtakes (tees & wyes)
Agenda

- Pigging: What, why and when?
- Pipeline inspection by MFL tools
- Pipeline inspection by UT tools
- ILI tool selection
Magnetic flux leakage (MFL) tools

16” PII MFL tool
Principle of operation

No defect present

Defect present

Leakage of field

Section of pipe wall

Defect
Output interpretation
Agenda

- ILI: What, why and when?
- Pipeline inspection by MFL tools
- Pipeline inspection by UT tools
- ILI tool selection
Ultrasonic technology (UT) tools

12” NDT ultrasonic ILI tool
Principle of operation

Diagram courtesy of NDT Systems & Services
Agenda

- Pigging: What, why and when?
- Pipeline inspection by MFL tools
- Pipeline inspection by UT tools
- ILI technology selection
Operational constraints

- **What is the available drive medium?**
 - UT – needs liquid couplant
 - MFL – can operate in gas or liquid

- **What are the process conditions during pigging and how controllable are they?**
 - Flowrate
 - UT – requires low, controlled flowrate (c. 0.5 – 1.0 m/s)
 - MFL – can tolerate higher flowrates and fluctuation (up to 4.0 m/s)
 - Pressure
 - UT and MFL – most tools c. 120-150 bar, some up to 300-400 bar
 - Temperature
 - UT and MFL – most operate up to c. 65°C
Defect detection requirements

What is the pipeline construction?
- MFL – can only magnetise carbon steel lines
- UT – can measure wall loss in most materials (CS, duplex, CRA)

What are the specific degradation mechanisms and threats to the pipeline?
- Global metal loss – MFL or UT generally suitable
- Pitting – UT provides higher resolution data
- Cracking – specific tool setup required whether UT or MFL
What sections of the pipeline can be inspected?

• Full pipeline from trap to trap
 • Traditional MFL or UT tool suitable

• Local riser/spools only
 • Crawler tool (usually UT)
 • Bi-directional ILI tool (MFL or UT)
Best Practice for Management of Pipeline Integrity by Pigging

Thank you for listening

Paul Otway