Welcome to the World of Trelleborg

Bend Protection of Flexible Pipe Systems
SubseaExpo – Aberdeen
Joshua Chadwick – 4th February 2016
Agenda

What’s to come....

What & Why?

How?

Technical Challenges

Market Pull

HSE and Environment
Bend Protection

The problem

What & Why?
Bend Protection

The problem

- Flexible connection points resulting in a sudden change in stiffness.
- Protection from over bending during installation, storage and operation.
- Remove the fatigue loads at the connection point through life.

What & Why?
Bend Protection

Typical considerations

Service Conditions

Storage and Handling

Design Life

Cost

What & Why?
Bend Protection

How?

Dynamic

Static

How?
Bend Protection

Bend Restrictor

How?
Bend Protection

Bending Stiffener

How?
Bend Protection

Testing and Qualification

How?
Bend Protection

Engineering analysis

- Initial design input
- Environment and conditions (temp, salinity, end fitting, etc)
- Installation conditions
- Design life - fatigue

<table>
<thead>
<tr>
<th>Load case</th>
<th>Bending Moment (kN.m)</th>
<th>Shear Force (kN)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Cycles</td>
</tr>
<tr>
<td>TH_118_D75_List_9.1_1yr</td>
<td>246.9</td>
<td>347.3</td>
<td>-126.5</td>
<td>-84.4</td>
<td>45</td>
</tr>
<tr>
<td>TH_118_D60_List_9.1_1yr</td>
<td>-351.2</td>
<td>-230.6</td>
<td>-129.4</td>
<td>-79.4</td>
<td>45</td>
</tr>
<tr>
<td>TH_118_D45_List_9.1_1yr</td>
<td>-301.5</td>
<td>-179.6</td>
<td>-117.6</td>
<td>-68.3</td>
<td>20</td>
</tr>
<tr>
<td>TH_118_D75_List_9.1_95%</td>
<td>229.8</td>
<td>267.0</td>
<td>-97.0</td>
<td>-83.3</td>
<td>2729</td>
</tr>
<tr>
<td>TH_118_D60_List_9.1_95%</td>
<td>-307.1</td>
<td>-213.5</td>
<td>-118.9</td>
<td>-77.6</td>
<td>2757</td>
</tr>
<tr>
<td>TH_118_D45_List_9.1_95%</td>
<td>-268.8</td>
<td>-192.8</td>
<td>-105.3</td>
<td>-74.1</td>
<td>1133</td>
</tr>
<tr>
<td>TH_118_D75_List_-9.1_1yr</td>
<td>243.7</td>
<td>333.5</td>
<td>83.9</td>
<td>120.4</td>
<td>45</td>
</tr>
<tr>
<td>TH_118_D60_List_-9.1_1yr</td>
<td>-342.1</td>
<td>-245.6</td>
<td>83.8</td>
<td>124.6</td>
<td>45</td>
</tr>
<tr>
<td>TH_118_D45_List_-9.1_1yr</td>
<td>-90.8</td>
<td>-12.7</td>
<td>29.6</td>
<td>58.9</td>
<td>20</td>
</tr>
<tr>
<td>TH_118_D75_List_-9.1_95%</td>
<td>-301.3</td>
<td>-262.8</td>
<td>94.9</td>
<td>109.0</td>
<td>2729</td>
</tr>
</tbody>
</table>

Technical Challenges
Bend Protection

The design

- Robust design that is fit for purpose.
- Using materials that are fit for purpose and to the customer specifications
- Protecting for the whole design life
- Incorporating into the final product
Bend Protection

The verification

- Internal Qualification
- External Qualification
- Process control
- Traceability

Technical Challenges
Bend Protection

Where do we go next?

Material Envelope Cost Schedule Performance

Market Pull
Bend Protection

Is it safe?

Must be a responsible supplier, responsible to:

- Staff and suppliers
- Customers
- Environment

This includes:

- Manufacturing practises
- Material selection (Mercury content and REACH legislation)