Designing Safe and Reliable HPHT Subsea Wellhead Systems

New Technology to Accommodate a System Approach to Verification Analysis and Validation Testing

Dr. Jim Kaculi, P.E., Dril-Quip Inc.
Outline

• HPHT Systems Requirements and Challenges

• Wellhead System Overview
 - System Verification Analysis
 - System Validation Testing – New Horizontal Test Machine

• New HPHT Wellhead System Design Concept

• Advanced Product Quality Planning (APQP)

• Conclusions
HPHT Subsea Systems

- **Requirements**
 - Pressure > 15 Ksi (103.4 MPa) and/or Temperature > 350°F (176.7°C)
 - Higher Structural Load Capacity Requirements
 - Longer Fatigue Life Requirements
 - Need for Next Generation HPHT Equipment

- **Challenges**
 - Uncertainties with Environmental Effects on Material Properties
 - Lack of HPHT Material Properties at Different Environments
 - More Stringent Regulatory Requirements for Verification Analysis and Validation Testing
 - New Tools and Technology Needed
The Wellhead is the topmost component of a well, suitable for the life of the well, non-retrievable, and provides:

- External Load Resistance
- Pressure Containment
- Pressure Controlling Interfaces
- Hanging Interface & Weight Support
- Fatigue/Cyclic Load Resistance
- Barrier to Environment
Verification Analysis

- Traditional (Hand Calculations, Equivalent Tension, 2D FEA)
- Advanced (3D FEA)
Equivalent Tension/Compression

CAPACITY CHART: INTERNAL PRESSURE VS. BENDING WITH TENSION/COMPRESSION

Limitations
- Equivalent Radius
- Compression Side of Bending
- Combined Load Effects
- Non-Axisymmetric Features (dog segments, etc.)
- Two capacity points determined with hand calculation cover all combined loads.
- Etc.

Selection of equivalent radius can affect calculated capacity by approximately 40%
3D FEA Capacity Chart

INTERNAL PRESSURE VS. BENDING WITH TENSION/COMPRESSION AND PRESSURE END LOAD

- Tension
- Compression
- Rated
- Extreme
- Survival

W/O PEL
W/ PEL

Pressure End Load (kips)
Internal Pressure (ksi)
Bending Moment (ft-lbf)

Subsea Systems Integrity Conference , November 18, 2014, London - Kaculi
Wellhead System Global Analysis

- **Loading Conditions**
 - Mechanical Preload
 - External Loads
 - Pressure
 - Pressure End Load (i.e. shear rams closed)
 - Casing Program & Weights
 - Thermal Loads
 - Cyclic Loads

- **3D FEA Model**
 - 200 ft Below Mudline
 - Non-linear Geometry Behavior
 - Over 1 Million Elements
 - No Tied Constraints
 - Modeled with Cement
 - Soil Properties
 - Installation sequence closely mimics field conditions

- **Static and Fatigue Evaluation**
Wellhead System
- Assembly:
 - Wellhead Connector
 - Low Pressure Housing
 - High Pressure Housing
- Process:
 - Preloaded System
 - 6MM lbf. Casing Weight
 - Apply Loads per Capacity Chart
 - Results Comparison
 - Inspection
 - Third Party Witness

Horizontal Test Machine Load Capacity
- 20×10^6 ft-lbf (27×10^6 N•m) Bending
- 13×10^6 lbf (57.8×10^6 N) Tension/Compression
- 6×10^6 lbf (26.7×10^6 N) Simulated Casing Loads
- Combined Loads
Wellhead System Post-Test Inspection

Compression

Connector Hub Face and Load Shoulders

High/Low Pressure Housing Bending Reaction Ring

Tension

Connector Load Shoulders

High/Low Pressure Housing Load Shoulder Interface

Subsea Systems Integrity Conference, November 18, 2014, London - Kaculi
20Ksi Wellhead Connector

- 35” OD Wellhead Mandrel.
- ~Twice Rated Capacity of the 15ksi Connector
- ~10 Times More Fatigue Life than Traditional 15ksi Connector
- 20 Ksi (137.9 MPa) Rated Pressure
- > 20×10^6 ft•lbf (27×10^6 N•m) Survival Bending Capacity
Advanced Product Quality Planning

APQP Process

- **Voice of the Customer / Critical to Quality (CTQ)**
- **Design**
- **Process Flow Diagram**
- **Process Failure Mode Effect Analysis (PFMEA)**
- **Process Control Plan (PCP)**
- **Design Failure Mode Effect Analysis (DFMEA)**
- **Design Failure Modes**
- **Process Failure Modes**

- “What” are the product requirements? Specified by customer.
- “How” do we address the product requirements? Specified by Dril-Quip.

How do we produce the product?

How does the process fail to produce the product as designed?

How does the design fail to satisfy the key product characteristics & not reduce failures?

How do we manufacture the product?

How does the process fail to satisfy the key product characteristics & not reduce failures?

How do we guarantee the process meets the critical product characteristics?

What happens if design & process risk assessment tasks are not done?
Conclusions

• A wellhead system verification analysis and validation test has been successfully completed and provided better understanding of the wellhead system performance.

• System validation testing provided critical information needed to make proper adjustments to the verification analysis methodology.

• Knowledge obtained from this test program is being applied for HPHT development work of 20 Ksi (or higher) subsea systems.

• A new 35” wellhead system/connector design concept is presented with structural capacity and fatigue resistance characteristics expected to meet the HPHT industry needs for the next decades.

• APQP implementation is key for safe and reliable equipment at HPHT environments.
Thank You!

Questions?
Dr. Jim Kaculi, P.E.
Dril-Quip Inc.
6401 N. Eldridge Pkwy, Houston TX 77041
Tel. +1-713-939-7711
E-mail: Jim_Kaculi@Dril-Quip.com