Introduction

The Challenge For Us All

Low oil price and high lift costs…

Yet over 80% of the world energy use reliant on fossil fuel

And subsea assets are an important part of this

However the North Sea is in it’s twilight years

But the maintenance and optimisation of often-aging brownfield subsea fields is critical

The industry has a moral as well as an economic obligation to maximise total production from these difficult reserves

How Long Can We Continue?
Current industry challenges

Risk of Failure and Poor Reliability on already installed systems
Failed wells without adequate support from the OEM require an alternative control solution to reinstate well production without full system replacement

Long Term Obsolescence Support for Extended Well Life
Support for extended field life and even for original design life may have limited part obsolescence support and / or engineering support from the OEM

Extending Fields for Additional Wells
Adding wells to brownfield subsea systems requires interfacing with existing and often unsupported aging technology both subsea and topside

Additional Instrumentation for Production Optimisation
Instrumentation to provide essential information to maximise remaining production may not be supported by the existing control system
Subsea systems & services

Operator Challenges

- Extend field for additional wells
- Additional instrumentation for production optimisation
- Risk of failure and poor reliability
- Extended well life

Proserv Solutions

- Co-exist
- SEM Retrofit
- SCM Refurbishment
- Topside Upgrade

Proserv Toolkit

- OCC
- OCH
- A2G
- SCM
- TIACS
- Subsea Interfaces
- Monitoring SeaHawk
- Topside Protocols
- ROV Tooling
- Hydraulics
Solution: Co-exist

Co-exist is an exciting proposition for the Brownfield subsea market.

Proserv’s innovative Artemis 2G SEM (Subsea Electronics Module) used in the SCM and/or OCH enables an extremely flexible approach to communications in the subsea environment.

The digitally filtered wide frequency signal is configured for each subsea module using an inbuilt analyser to optimise performance.

This enables the Proserv control system to readily adapt to existing system noise and of course incumbent system signals.

Co-exist enables Proserv to superimpose the powerful A2G controls onto a pre-existing control system using either the powerline or the existing signal line, without affecting the OEM control.
Solution: Retrofit existing SCMs and SEMs

“Brain Surgery”
The ability for Proserv to retrofit an established OEM’s SCM design with the A2G SEM is an innovative proposition for operators experiencing failing electronics or aging subsea equipment requiring long term support.

Retrofitting and refurbishing the OEM’s SCM provides:
• Maintenance of current subsea interfaces
• Latest specification SEM with additional interfaces available
• Fully supported SCM electronics with obsolescence management
• Maximise use of existing infrastructure to reduce CAPEX and risks
• As new SCM with upgraded functionality
• Opportunity for phased upgrade without affecting production
• Remote support and service provision
• Improved subsea production system reliability
Solution: Topside Upgrade

The solution for improving reliability or management of obsolescence also requires component level reviews of surface control systems associated with subsea controls.

This includes the Master Control Station, Electrical Power Units and Hydraulic Power Units.

Upgrade and modification of topside systems may be required to:
- Expand fields for additional wells
- Extend the control system supported life
- Add subsea instrumentation to an existing field
- Or retrofit and refurbish

Proserv Upgrade of Topside Systems
- Electrical, Fibre Optic, Chemical, Hydraulic
Case Studies
Project profile: Toni Field

Brownfield Upgrade - Subsea

Additional Wells – Co-exist – Topside upgrade

Project Background
The Toni field is operated by CNR in Aberdeen. The field consists of two subsea templates (one Production and one Water Injection). CNR were unable to contract the OEM for controls to extend both templates to accommodate an additional well at each template. The OEM control module design was obsolete and no solution to add these wells was available without a full system replacement, which was not economically viable.

Solution
Proserv provided a Brownfield Upgrade solution. By utilising the power conductors for both communications and power Proserv minimised any cross talk between the two systems. This approach provided the client with a cost effective solution that did not require full system replacement, did not impact on the day to day operation of the Toni Field, provided the flexibility to continue to upgrade and add a further field into this controls infrastructure in the future.

Scope
Proserv upgraded the existing CNR subsea control system on the Toni Field using an Open Communications Hub (OCH) and 2 additional Subsea Control Modules (SCM’s). The existing topology utilised separate communications and power, enabling Proserv to co-exist with the existing umbilical power cores and share these services with the incumbent system.

Benefits
Proserv enabled CNR to improve production from the Toni field by adding two wells without a full system change.

The flexibility of this co-exist system now enables CNR to consider other wells and other field tie-ins, which were otherwise not available.

Increasing the life and production from the Toni field.

Client: CNR
Location: North Sea
Equipment: New SCMs and OCH

“Proserv stepped up to the challenge of providing a co-exist controls solution to ‘extend and enhance’ our aging subsea asset where no viable solution was available from the OEM”

Paul Hunter – CNR Aberdeen
Project profile: Troll C

Brownfield Upgrade - Subsea
Additional Instrumentation – Co-exist

Project Background
Because of operational limitations the client required regular video inspection of subsea infrastructure and valve isolation should a leak be detected. Typically ROV deployment was necessary every quarter and this was proving both very costly and logistically demanding.

Solution
Proserv provided a subsea monitoring system that co-exists with the original OEM control system. Proserv SeaHawk™ subsea surveillance is permanently positioned to monitor a defective methanol line during injection processes. If a leak is detected the Proserv system is also equipped with an electrical actuator position on the chemical isolation valve. The requirement for regular ROV deployment is now not necessary and all video inspection and valve actuation can be completed from the host facility without intervention, saving both the cost and logistics of ROV vessels in field.

Scope
A Proserv Open Communications Hub (OCH) with power-line communication is provided to co-exist with the OEM’s control system. The OCH is installed with two outputs for SeaHawk™ cameras and one output an electrical actuator. The electrical actuator is used for control of Methanol valve and operates using 48Vdc supply and RS485 communications from the OCH. A single SeaHawk™ camera is fitted in the first installation with a second available as a configurable SIIS L3 instrument for the future. The SeaHawk™ provides constant video monitoring detection or 3 minutes of high resolution video in every hour for analysis and identification.

Benefits
The Proserv control and monitoring system dramatically improves the system capability using existing infrastructure
Provides a highly flexible system using configurable electrical actuator, subsea video monitoring or future SIIS L3 instrumentation
Provides permanent subsea monitoring and actuation without the regular high cost of ROV intervention
Project profile: Anglia

Production enhancement - Subsea
Poor reliability – Obsolescence – SCM Retrofit

Project Background
A remote unmanned platform in the North Sea supports two subsea production wells linked to a Host platform. The subsea control system is over 20 years old, is unsupported by the OEM and has suffered from repeated failures, unscheduled shutdowns, and limited remote support leading to a significant loss of production.

Solution
Proserv provided a retrofit solution using the existing Subsea Control Module (SCM) hydraulic and mechanical hardware but replacing the Subsea Electronic Module (SEM) for a more reliable and fully supported unit. This provided a replacement solution with the incumbent Subsea Control Modules (SCMs) and thus an upgrade path to improve availability and support and system capability.

Scope of work
A study was undertaken to consider the implications of SEM replacement within each SCM, including the use of existing inductive couplers which are inherent in the system. Each SCM was disassembled, pre tested, retrofitted and FAT tested with new Proserv electronics. The surface control system was also replaced with a new MCS to replace the OEM system and provide communications to the retrofit SCMs.

Benefits
- Significantly less expensive than a replacement
- Significantly greater technical performance and reliability
- Enables Production from an otherwise unproductive field
- Higher reliability and availability
- Optimised uptime
- State of the art electronics and connectivity
- Remote connectivity

Client: Ithaca
Location: North Sea
Equipment: Subsea Controls SEM and Surface Retrofit
Project profile: Princess

Brownfield Upgrade - Subsea
Optimise System – Co-exist – OCH retrofit

Project Background
With a step out distance of 6 km and water depth of 1200 m, the challenge was to provide communication from an existing topside system to the subsea system via power-line communication, co-existing with FMC KOS 150 SCM's. The key requirement was to optimise system performance, delivering a design life of 20 years.

Solution
Proserv delivered a retrofit Open Communications Hub (OCH) solution to provide co-exist high-speed communications on the power line with existing SCM. This enabled the conversion of AC high-voltage to DC with the provision of power management subsea to all instruments.

Scope
The provision of high bandwidth communications and co-exist technology with the existing subsea system delivered all the key requirements on performance as set out by the client.

Benefits
The system was qualified to provide shared electrical power with the P6 Production SCM and utilise a fibre optic distributed temperature sensing and P/T gauges (FBGs) to monitor functionality of the P6 gas lift system.

A marinised DTS (in-well Distributed Temperature Sensing) was developed and the installation of fibre optic technology provided a platform for Shell to evaluate fibre optic technology for future applications.