Subsea Field Development and Production Enhancement (IOR)

by
Jan O. Hallset
Technology Director
Poseidon Group
September 2009

Presented at Offshore Europe 2009 in Aberdeen
Poseidon Group

- Specialists in **subsea** systems:
 - Engineering & studies
 - Solutions & equipment packages (EPC)
 - Installation & operational support

- **Key facts:**
 - Founded: 2000
 - Staff: 150 (2009)
 - Turnover: 50 MUSD (2009E)
 - Offices: Aberdeen, Stavanger

- Visit us at: www.poseidongroup.co.uk
A Subsea Field Development?
Components in a Subsea Production System

- Topsides
- Process
- Well Head
- Manifold
- Umbilical
- Flowline
- Reservoir
- Well
Field development architectures:
Manifold, individual wells or daisy chained well; tied back to a production facility
Start with a Study to Establish the Concept
Girrasol(Total) : Well clusters with manifolds

1400 meters depth
Ormen Lange (Shell): Long Step out / Deep Water

- 42” export line
- 2 x 30” flow line
- 2xMEG + 2x Umb
- Shore terminal
- Template A
- Template B
- 120 km from land
- 850 meters depth
What tools can be used for IOR (Increased Oil Recovery) given the typical production profile for gas/oil wells?

We want to lift the curve.
Possible “Tools”

- Inject water to maintain reservoir pressure
- Reduce wellhead pressure by subsea boosting and compression
- Reduce pressure drop and increase flowline capacity by removing water subsea

Production = PI (P_res – P_bh)

- P_top
- Riser (size & depth)
- Flowline (size & step-out)
- P_res
- P_bh
Status for Tools (=Subsea Processing)

- **Now:**
 - Boosting (Multiphase)
 - Raw water injection
 - Electric submersible pumps (ESP)
 - Bulk separation

- **Near future:**
 - Water treatment
 - Gas compression
 - Compact separation
Yme Redevelopment (Talisman) – ESP
Tordis (Statoil): Subsea Separation and Boosting
Pazflor (Total): Subsea Separation and Boosting

SPS Scope:
- 49 EHXT Xmas Tree’s
- Production Control System
- 3 Manifold Systems
- 1 SIV Skid (Gas Export Isolation Valve)
- Connection equipment
- ROV, Running & Tie in Tools
- 2 WOCS with Umbilical

SSS Scope (3 off):
- Subsea Separation Unit
 - Foundation Base Structure
 - Intermediate Frame
 - Inlet Valve Module
 - Separator Module
 - Manifold Module
 - Pump Modules
 - Subsea Control Module
- Controls & Power Umbilical
- Pump Control Module
- Topside Control System
Ormen Lange (Shell): Subsea Compression

Length: 60m
Width: 38m
Height: 12m
Weight: 3,300 t
GIIP = 528e9 Sm3

wo compression: 10 = 294e9 Sm3

w compression: +97e9 Sm3 = 391e9 Sm3

Longer plateau and increased recovery at Ormen Lange (Courtesy of StatoilHydro)
What about CAPEX and OPEX?
Example based on Subsea Treatment of Injection Water

- Injection of treated seawater from topsides is the most common method for Increased Oil Recovery (IOR):
 - Maintains reservoir pressure
 - Drives the oil to producing wells

- Our new SWIT technology allows a treatment system to be placed on the seabed

- NOTE: Treatment is essential for long-term protection for the reservoir
Base Case - Topside Water Treatment

Seawater intake → Water Treatment Plant → HP pipeline
SWIT Enables Seabed Based Water Treatment

- Save on major cost items
 - Topside treatment
 - HP Pipeline
 - Low OPEX
 - CAPEX when needed
SWIT Application: Fully Integrated System for Water Injection to a Satellite Field

- SWIT at the seabed: 24 mill$
- Flowline from topside: 52 mill$

-> More than 50% cost saving

- 30,000 BPD
- 275 Bar
- 2.5 MWatt
- Power cable only