Smart monitoring of subsea pipework
Agenda

- Onboard signal filtration, data processing, and data interpretation/for the following subsea applications:
 - Acoustic sand monitoring
 - Acoustic Corrosion and Erosion monitoring
 - Vibration monitoring
Subsea monitoring limitation

Acoustic instrumentation generate big data. Big data cannot be transmitted to surface/shore, hence the need for subsea data processing.
Standard Interfaces

<table>
<thead>
<tr>
<th>Name</th>
<th>AKA</th>
<th>Details</th>
<th>Data rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIIS L1</td>
<td>4-20mA</td>
<td>Simplex</td>
<td>-</td>
</tr>
<tr>
<td>SIIS L2</td>
<td>CanOpen</td>
<td>Duplex</td>
<td>Low</td>
</tr>
<tr>
<td>SIIS L3</td>
<td>Ethernet</td>
<td>Full duplex</td>
<td>High</td>
</tr>
</tbody>
</table>
Standard Interfaces

<table>
<thead>
<tr>
<th>Name</th>
<th>AKA</th>
<th>Details</th>
<th>Data rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIIS L1</td>
<td>4-20mA</td>
<td>Simplex</td>
<td>-</td>
</tr>
<tr>
<td>SIIS L2</td>
<td>CanOpen</td>
<td>Duplex</td>
<td>Low</td>
</tr>
<tr>
<td>SIIS L3</td>
<td>Ethernet</td>
<td>Full duplex</td>
<td>High</td>
</tr>
</tbody>
</table>

- Bus
- Fault tolerant
- Stable
- Defined
- 50 kbit/s
Subsea Sand detector

Sample rate: 10Mhz ~ 120Mb/s = too much
Output: one value per second
Onboard sand calculation

Safety check

<table>
<thead>
<tr>
<th>Velocity</th>
<th>Zero</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4817</td>
</tr>
<tr>
<td>8</td>
<td>5250</td>
</tr>
<tr>
<td>10</td>
<td>6000</td>
</tr>
<tr>
<td>15</td>
<td>9000</td>
</tr>
<tr>
<td>20</td>
<td>10500</td>
</tr>
</tbody>
</table>

> roof?
Corrosion Erosion Monitoring

Permanent “active” acoustic, non intrusive wall thickness monitoring system.
What Does it do?

- Real-time monitoring of average wall thickness
- Covers up to 60% of measuring area
- Measures up to 56 individual paths
How does it work?

- Induced current in magnetic field creates a force
Processed data

- Sample rate: 4Mhz
- 2000 samples per measurement / path
Transmitted / user data

Defect Length in CM / Measurements in MM

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.90</td>
<td>1.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.16</td>
<td>1.38</td>
<td>1.42</td>
<td>1.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.15</td>
<td></td>
<td></td>
<td>1.29</td>
<td>1.34</td>
<td>1.42</td>
<td>1.21</td>
<td>1.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td>0.27</td>
<td></td>
<td>0.93</td>
<td>0.93</td>
<td>0.93</td>
<td>0.88</td>
<td>0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0.10</td>
<td></td>
<td></td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>0.35</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.10</td>
<td></td>
<td>0.27</td>
<td></td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>0.35</td>
<td></td>
<td></td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>0.10</td>
<td></td>
</tr>
</tbody>
</table>

Graph showing wall thickness change over time for different channels.

THE LEADER IN SAND, PIG AND CORROSION-EROSION MONITORING
Example #1

Application: Erosion
Type: Integrated
Interface: SIIS L3 (Ethernet)
Example #2

Application: erosion
Type: Integrated
Interface: SIISL2

Fully integrated, frequent measurement trough bend
Subsea Vibration monitoring

Instrument installed on 6” flex loop

Instrument installed on 2” injection line
MicroElectroMechanical Systems

- Accurate
- Sensitive
- Power friendly
- Very Small

Mite on top of MEMS mechanic
Hardware overview ASVD

Data logger Board

DSP II

Accelerometer
3 axial accelerometer

Piezo 1
Piezo 2

RS485 (serial)
CAN Bus (SIIS L2)
USB
Digital IO
Relays
On-board signal processing

- Sensing
- Filtering
- A/D conversion
- Spectral analysis
- Integration
- Peak/RMS calculation

Derived quantities:
- Peak acceleration
- RMS velocity
- Peak frequency
- Effective frequency
- Crest factor

Spectrum output
Raw data output
ASVD placement

- ASD
- MPFM
- Choke valve
- Flow
- Probes
- Connector
ASVD placement
Stand-Alone Vibration Monitor (LPHP)

- High precision accelerometers (3 axes)
- Low power accelerometers (3 axes)
- Gyroscopes (3 axes)
- Magnetometers (compass) (3 axes)
Hardware overview LPHP

- HP X-Acc
- HP Y-Acc
- HP Z-Acc

Flash memory

Processor

Motion Chip
- 3axial accelerometer
- 3 axial gyroscope
- Magnetometer

Connections:
- RS485 (serial)
- Future: Ethernet SIIS L3
- USB
- Digital IO
- Relays

THE LEADER IN SAND, PIG AND CORROSION-EROSION MONITORING
Temporary / inspection
Thank you for your attention!

Any questions?

Kjetil Nysæter
ClampOn
Kjetil@clampon.com
www.clampon.com