Emerging Subsea Technologies –
New Solutions to Increase Recovery
Kuala Lumpur – 3rd June 2015
Salvatore Micali | BD Manager Emerging Subsea Technologies APAC
Content

- Introduction
- Subsea pump systems
- Subsea compression systems
- Subsea separation systems
- Subsea power systems
- Case study
- Summary
Aker Solutions in brief

- Aker Solutions is a global provider of products, systems and services to the oil and gas industry
- Built on more than 170 years of industrial tradition
- Employs approximately 17,000 people in about 20 countries

Employees: **17,000**
Revenues: **33.0 bn**
EBITDA: **2.7 bn**
EBIT: **2.0 bn**
Market Cap: **11.9 bn**

Revenue and profits are in NOK and pro forma for 2014. Market capitalization as of March 3rd, 2015.
Subsea boosting and separation – Why?

- **Subsea Boosting:**
 - Increase production
 - Accelerate production
 - Enable staged development
 - Enable development of low pressure reservoirs
 - Reduce OPEX

- **Subsea Separation:**
 - Address flow assurance issues
 - Hydrates, slug, etc.
 - De-bottleneck topside facilities

![Enhanced Production Diagram](image)

![Extended Production Diagram](image)
Subsea pump systems
IOR case example – Tyrihans project

Oil recovery rate increased by 10%

Subsea raw seawater injection system
Subsea pumping technologies

Key features
- Liquid filled motor
- Rigid coupling
- Opposed impeller design
- Full condition monitoring
- High pressure boosting at high GVF%

Common system design

Applications
1. Oil and condensate boosting
2. Sea water injection – raw or filtered
3. Produced water re-injection
4. De-bottleneck topside facilities
Game changing in several aspects...

Subsea motor:
- 6 Megawatt
- 6000 RPM
- 6,6 kV

Condition monitoring:
Proximity probes in motor and pump

Gas tolerant impeller/diffuser
Åsgard subsea compression project

Project details
- Shut in pressure: 220 bar
- High power: 2 x 11.5 MW
- Flow rate: 21 MSm3/d
- Compressors: 2+1
- Step-out: 40 km
- Water depth: 250 m
- Topside frequency converter

Project Schedule
- 2006 - 2010: Studies, Pre FEED, FEED
- 2010: EPC contract
- 2013: Equipment testing
- 2014: Assembly and System testing
- 2015: Delivery and start-up

Statoil - “add a formidable 278 million barrels of oil equivalent to our production”
Subsea compression technology going forward

Key features
- Compact footprint, reduced weights (WSC™)
- High efficiency
- High compression ratio
- High capability to manage well-stream with high liquid content

Applications
1. Small-medium size gas fields
2. Stranded gas developments
3. Long subsea tie-backs
4. Solve flow assurance accelerating gas flow
Subsea separation systems
Subsea Gas Processing technologies

Technologies
- Subsea passive / active cooling
- Gas / Liquid separation (gravity based and compact)
- Compact subsea gas dehydration system through membrane

Applications
1. Pipeline corrosion protection
2. Gas fields with associated liquid
3. Address flow assurance issue
4. Subsea dehydration
5. Long subsea tie-backs
Subsea Oil / Water separation technologies

Technologies
- Oil / Water separation (gravity based, pipe and compact)
- Water treatment with hydro-cyclones
- Oil polishing with Electric Coalescer
- De-sanding cyclones solutions

Applications
1. Oil fields with high water content
2. Topside de-bottlenecking
3. Subsea water reinjection
4. Address flow assurance issue
5. Long subsea tie-backs
Subsea power systems

Reliable subsea power solutions
Subsea power systems

- **Type 1**
 - Topside VSDs
- **Type 2**
 - Topside VSDs
 - Subsea transformers
- **Type 3**
 - Subsea VSDs
 - Subsea Switchgear
- **Type 4**
 - Low Frequency AC
 - 4a - Subsea VSDs
 - 4b - Topside VSD, RotoConverter™
- **HVDC – limited industry focus today**
 - No connectors
 - No switchgear
 - Large / heavy
 - N/A next 10-20 years
Case study
Case study – Marginal tie-back to FPSO

- Oil production – 50,000 bpd (for the field that will be tied-back)
- Water depth – 1000 m
- Tie-back distance – 30 km
- API – 39.9°
- GOR – 251 SCF/stb
 - (GVF – 20%)

3 development cases considered:
1. Natural Flow
2. Gas lift at XMTs
3. Subsea multiphase pump
Case study – Marginal tie-back to FPSO

HYSYS Simulation:
Case study – Marginal tie-back to FPSO

HYSYS Simulation:

Huge limitation on production
Case study – Marginal tie-back to FPSO

HYSYS Simulation:

Case 3

Considering WHP of 50 bar:

- Only Multiphase pump solution (Case 3) can ensure good production to host
Summary
Summary

- Advance Subsea Production (ASP) systems include, **SPS**, **pump**, **compression** and **separation**

- These technologies are available today and **ready to be deployed**

- They offer alternative development scenario for challenging **deep water**, **marginal** and **stranded reservoirs**

- Building blocks approach to provide **standardization**, **flexibility** and cost reduction.
Ready for the Advanced Subsea Production systems

Uniquely positioned to **design, equip, build and maintain** the subsea systems of the future
Copyright and disclaimer

Copyright
Copyright of all published material including photographs, drawings and images in this document remains vested in Aker Solutions and third party contributors as appropriate. Accordingly, neither the whole nor any part of this document shall be reproduced in any form nor used in any manner without express prior permission and applicable acknowledgements. No trademark, copyright or other notice shall be altered or removed from any reproduction.

Disclaimer
This Presentation includes and is based, inter alia, on forward-looking information and statements that are subject to risks and uncertainties that could cause actual results to differ. These statements and this Presentation are based on current expectations, estimates and projections about global economic conditions, the economic conditions of the regions and industries that are major markets for Aker Solutions ASA and Aker Solutions ASA’s (including subsidiaries and affiliates) lines of business. These expectations, estimates and projections are generally identifiable by statements containing words such as “expects”, “believes”, “estimates” or similar expressions. Important factors that could cause actual results to differ materially from those expectations include, among others, economic and market conditions in the geographic areas and industries that are or will be major markets for Aker Solutions’ businesses, oil prices, market acceptance of new products and services, changes in governmental regulations, interest rates, fluctuations in currency exchange rates and such other factors as may be discussed from time to time in the Presentation. Although Aker Solutions ASA believes that its expectations and the Presentation are based upon reasonable assumptions, it can give no assurance that those expectations will be achieved or that the actual results will be as set out in the Presentation. Aker Solutions ASA is making no representation or warranty, expressed or implied, as to the accuracy, reliability or completeness of the Presentation, and neither Aker Solutions ASA nor any of its directors, officers or employees will have any liability to you or any other persons resulting from your use.

Aker Solutions consists of many legally independent entities, constituting their own separate identities. Aker Solutions is used as the common brand or trade mark for most of these entities. In this presentation we may sometimes use “Aker Solutions”, “we” or “us” when we refer to Aker Solutions companies in general or where no useful purpose is served by identifying any particular Aker Solutions company.