ExxonMobil – Capturing Deepwater Experience to Improve Subsea Reliability

Subsea Forum Europe 2007
June 14, 2007

Dave C. Lucas
Subsea Systems Manager
Presentation Outline

• ExxonMobil Deepwater History & Trends
• ExxonMobil Project Highlights/Outlook
• Deepwater Development Characteristics
• Lessons Learned – Examples
 – Subsea Wet Insulation
 – Hydraulic Flying Leads
• The Reliability Challenge
• Proactive Improvement Approach
• Conclusion
• Way Forward – Deepwater Reliability Improvements
ExxonMobil Offshore Technology - A Long Term Commitment

- Track record for offshore innovation
- Focus on fundamentals to ensure integrity and cost effectiveness
- Ability to apply research and add value to deepwater developments
ExxonMobil’s Move to Deeper Water

- Grand Isle-GOM 50 ft
- West Delta-GOM 168 ft
- Hondo CA 850 ft
- Lena GOM 1000 ft
- Harmony CA 1200 ft
- Zinc-SS GOM 1480 ft
- Hoover/Diana-GOM 4800 ft
- Marshall Madison-GOM 4850 ft
- Angola Kizomba-A 3900 ft FPSO/SS
- Angola Kizomba-B 3600 ft FPSO/TLP
- Angola Kizomba-C 2400 ft FPSO/SS
- Nigerian Erha 3600 ft FPSO/SS
- Angola Xikomba 4450 ft EPS-FPSO/SS
- Mica-GOM 4350 ft SS
- FPSO
- TLP
ExxonMobil Deepwater Business Trends

• Subsea portfolio is expected to double within the next 5 years – primarily driven by developments in West Africa
• Increasing contribution from subsea volumes, primarily deepwater
• Field locations remote from infrastructure, operating requirements more demanding, more challenging fluids/reservoirs
• High rate wells, significant volumes increasing need for reliability focus
• Project execution in high activity environment
Deepwater Development Characteristics

• Typically contains highly engineered equipment, numerous sub suppliers, frequently an industry step-out, or first application of technology
• High cost/consequence failures – equipment typically designed for 20+ years of flawless service
 – Qualification for service is critical, assessments required for each project
 – Vendors interpretation of qualified/field proven subject to Operators interpretation
• Industry standards do NOT cover majority of components, Company specs, engineering judgment used to bridge gap
• Deepwater developments are still a relatively frontier area – less than a decade of operating experience. Exposed to catastrophic problems/failures through unforeseen technical issues.
• Vendors routinely optimizing designs to improve product lines
 – Supply chain management, new supplier approval - reevaluation of design impacts needed
 – Heated market, managing impact of limited technical resources and experience
 – Frequently design nuances determined post-award, additional qualification needed during project execution
• Operating experience, lessons need to be captured to avoid repeats
Wet Insulation Failures

- Insulation critical to capture heat, manage hydrates, wax in deepwater
- Failure modes (cracks, disbondment, etc.) greatly affect thermal performance
- Causes identified
 - Lack of surface preparation
 - Out of spec. mixing ratios
 - Improper material use – not qualified for service
 - Lack of understanding of in-service condition behavior
 - Limited qualification testing
 - Improper design, field joints, connection details
Hydraulic Flying Lead (HFL) Failures

• Hydraulic flying leads essential to operation (hydraulic supply, chemicals)
• Numerous HFL failures experienced related to fitting leaks, hose bursts
 – End fitting seal surface damage, excessive torque during fabrication, fittings assembled incorrectly
 – Poor / missed carcass welds prior to the Nylon extrusion process
 – Carcasses insufficiently threaded into the hose coupling

• Hockling (twisting under pressure) compromises HFLs minimum bend
 – Hockling torque in excess of 1225 Nm (900 lbf-ft) damaging stab plates, tubing, couplers
 – Extensive investigation, product re-design and quality improvement required with HFL suppliers
The Reliability Challenge

• Scope of qualification testing needs to be well-defined, ahead of contract award, to ensure subsea equipment performs reliably under expected project service conditions.
 – Basis for vendor declaration that equipment “qualified or field proven” needs to be
 • Clearly documented
 • Readily available for review and acceptance.
 – Alignment needed on acceptable qualification testing standards, methods
• Qualification process needs to consistently flag critical design features or inherent weaknesses, to ensure adequate evaluation.
 – Need to be failure mode based
• Qualification needs to be integrated with QA/QC
 – Tighter acceptance testing for critical features
• Relate equipment failures/lessons learnt to effectiveness of qualification, QA/QC practices
• Provide a mechanism to effectively, clearly communicate functional requirements and potential failure mechanisms with vendors and their growing supply chain, particularly second and third tier suppliers.
Proactive Reliability Improvement Approach

- EM in conjunction with major subsea vendors have developed a systematic, structured approach to subsea equipment qualification
 - **Generic failure mode assessment (FMA) templates developed at component level** for subsea system equipment
 - FMA based approach - based on simplified DNV-RP-A203 and FMA methods
 - Utilizes a **datasheet format, referenced directly to vendor part number** (similar to ISA Datasheets used in topsides)
 - Documents service conditions, also qualification testing for failure modes, basis for acceptance
 - Documents QA/QC criticality for the specific part number
 - Summarizes FAT requirements
 - References reports, standards, supporting info
 - Provides historical qualification information
 - Part number, datasheet approach improves visibility on technical information, facilitates standardization, procurement

Levels of Technical Definition

- **Part Numbers**
- **Specific Designs**
- **Defined Interfaces**
- **Equipment Specifications**
- **Functional Requirements**

Scope of Standardization

- **Integrated Systems**
- **Systems**
- **Assemblies**
- **Sub-assemblies**
 - **Components**
 - **Sub-components**
 - **Machined parts**
 - **Materials / Forgings**

ExxonMobil Development
Subsea Component Qualification Categories

- 11 identified Component Categories
- 75 components identified based upon criticality
- Criticality based upon hydrocarbon containing, failure resulting in PSD or subsea intervention, failure resulting in loss of primary operations functionality

- Valves
 - Ball
 - Gate, etc...
- Actuators
- Chokes
- Subsea tree assembly
 - Main body
 - Tubing hanger assembly
 - Tree cap, etc...
- Manifold assembly
 - Fittings (tees, crosses, elbows)
 - Pipe bends
 - Pigging assembly, etc...
- Jumpers and Connectors
- Subsea controls – hydraulic/chemical
 - Couplers
 - Hydraulic flying leads
 - SCM-hydraulics, etc...
- Subsea controls - electric
 - Transducers
 - Electrical flying leads
 - Flow meters, etc...
- Coatings and insulation
 - CP system
 - Preservation fluids
- Completion equipment
- ROV tools and installation aids
Product Qualification Sheets (PQS) - Example

Component Identification Information
- Component / assembly type & description
- Vendor / sub-supplier(s)
- Part # & BoM
- Drawing # & assembly procedure #

Service Conditions / Operating Parameters
- Water depth
- Operating pressures / temperatures
- Material class / requirements
- Design life, etc.

Preferred Configurations / Characteristics
- Optional equipment selection
- Location / orientation of elements
- Preferred coatings
- Labeling / markings, etc.

Qualification Testing Requirements
- Qualification testing requirements
- Applicable industry standards / codes
- Acceptance requirements
- Performance verification

Quality Requirements / Inspections
- Inspection & testing requirements (FAT, SIT, SRT)
- Dimensional verification requirements
- Documentation requirements
- Material identification / traceability
Conclusion

Proposed process provides a proactive approach to improve subsea equipment reliability

- Generic failure mode templates highlight critical design features consistently
- Clear documentation of basis for fit-for-service acceptance
- Provides a starting point for management of design changes, upgrades to new service conditions, qualification gaps
- Part number basis fits well with vendor internal tracking systems, interfaces with manufacturing and quality systems – no need to invent something new
- Facilitates leveraging qualification information across many projects, operators
- Failure mode templates facilitate permanent capture of lessons learned
- Excellent reference tool for less experienced personnel, industry information capture

Other Opportunities

- Facilitates tendering, bid evaluation, project execution – promotes standardization
 - Vendor resources, project team can focus more on project specific issues
- Potential to minimize engineering costs, reduce contingencies, maximize vendor efficiencies
- Potential delivery schedule acceleration by capitalizing on existing successful designs
- Facilitates local content capabilities
Way Forward – Proactive Deepwater Reliability Improvements

• Ensure equipment can demonstrate performance across expected service conditions
 – Need consistent qualification processes
 – Higher visibility on fit-for-service basis
 – Structured process to manage design changes
 – EM proposal to API RP 17 Subcommittee – June ‘07
• Migrate toward standard components
 – Reliability through repetition of proven designs, interfaces
 – Minimize project specific engineering (tinkering)
 – Capture supply chain and manufacturing efficiencies, improved quality through repetition
• Facilitate successful vendor project execution
 – Streamline documentation, datasheet approach
 – Better communication with subvendors on critical information
• Improve permanent capture of lessons learned
 – Industry wide sharing via FMA approach
Questions?

Corporate Separateness Notice

Nothing in this presentation is intended to override the corporate separateness of local entities. Working relationships discussed in this material do not necessarily represent a reporting connection, but may reflect a functional guidance, stewardship, or service relationship. Where shareholder consideration of a local entity matter is contemplated by this material, responsibility for action remains with the local entity.

Exxon Mobil Corporation has numerous affiliates, many with names that include ExxonMobil, Exxon, Esso and Mobil. For convenience and simplicity in this presentation, those terms and terms like corporation, company, our, we and its are sometimes used as abbreviated references to specific affiliates or affiliate groups. Abbreviated references describing global or regional operational organizations and global or regional business lines are also sometimes used for convenience and simplicity. Similarly, ExxonMobil has business relationships with thousands of customers, suppliers, governments, and others. For convenience and simplicity, words like venture, joint venture, partnership, co-venturer, and partner are used to indicate business relationships involving common activities and interests, and those words may not indicate precise legal relationships.