Contents

- Introduction to pipelines
- Where do you as engineers fit in?
- Diversity of the pipelines industry
- Example projects
Different types of pipelines

Trunklines (export)

Large diameter gas transmission lines. 40” plus diameter, up to circa 1000 km

Interfield and Infield lines (flowlines)

Transporting oil or gas within / to fields. 6-20” diameter, few km up to approx 100 km

Langeled Pipeline

- Transport 20bcm gas / year
- 44” diameter concrete coated, 1200km in length
- 150 -250 bar internal pressure
- Steel rods for concrete sufficient for 3 Eiffel T!
Example of a subsea field development

BP Rhum Field Development
Overall Field Layout

CSO Apache
CSO Constructor
Where do engineers fit in today?

Operators (owners)

Suppliers and Technology Inst

Discovery | Evaluation | Implement | Production | Decomm

Contractors (builders)

Engineering Houses (designers)
Diverse disciplines and skills for newcomers

- Diverse disciplines
 - Mechanics
 - Geotechnics
 - Dynamics
 - Fluids
 - Materials

- Diverse skills
 - Concept to detailed design
 - Analysis including F.E
 - Technology development
 - Code development
Globally diverse industry – exciting challenge!

- Geographical diversity of pipelines industry
- Varying levels of maturity
- Varying regulatory regimes (prescriptive or not)
- Different regions bring diverse technical challenges
- Multi-cultural
Diverse technical challenges

- Deep water
- Very shallow water
- HP-HT
- Aggressive gasses
- Harsh Environments
- Heavy oils
- IRM
- Decommissioning

- Safety
- Environment
- Design for installation
- Flow assurance
- Insulated pipelines
- Material selection and behaviour
- Limit state pipeline design methods
- Upheaval buckling
- Lateral buckling and pipeline walking
- Highly irregular seabeds
- Spans and fatigue
- Geohazards; routing, stability
- Seismic
Project Examples

- Consulting
- Design
Technical Challenges – Lateral Buckling

- Many subsea pipelines operate under high pressure and temperature
- This generates large axial compressive forces in the pipe due to the frictional restraint from seabed
- The axial compressive force causes the pipeline to buckle laterally at an imperfection e.g. out-of-straightness
- The pipeline will expand, feeding-in towards the buckle resulting in large lateral displacement, e.g. 10m
- The bending moment and strains in the buckle apex could exceed the allowable limits and lead to local buckling or fracture and hence pipeline failure
- Advanced engineering analysis can be used to assess all aspects of this phenomenon

- **The results can be used to determine effective mitigation solutions**
Potential solutions

- Do nothing, prove lateral buckling is ok without mitigation
- Expansion spools
- Snake lay
- Sleepers
- Buoyancy
- Intermittent rock dump

Engineering from first principles – global analysis
Engineering from first principles – local analysis
Aqaba Pipeline Design

15km of 36” Pipeline across the Gulf of Aqaba. Part of a transmission system taking gas from Egypt to Jordan, Syria and then on to Turkey.
Technical challenges

- **Deepwater** (remains the deepest water 36” pipeline). 856m at deepest point

- One of the most active **seismic** areas in the world. Egypt moves 2cm relative to Jordan annually. Pipeline designed to withstand 7.5 on Richter scale

- **Steep slopes,** deep gullies and long spans. Drop nearly 900m in 4km

- **Environmentally** sensitive (corals). Also lack of water meant that hydrotest was a problem
Harsh environment

- High quality survey and current data allowed optimal route to be chosen to minimise spans
- Spans in deep water are very expensive to rectify using supports or rock
- Largest spans up to 450m were reduced to 220m by:
 - Carried out advanced engineering using limit states
 - Specified concrete half shells as overweight and mattresses
- Environmentally sensitive area (corals)
- Lack of water was a problem for hydrotesting the pipeline
 - First pipeline in the world not to be hydrotested
Span analysis and route selection
Buckle arrestors

- High external pressure means that pipeline collapse due to buckle formation is an issue
- Most likely during construction
- Buckle will propagate at about the speed of sound!
- Mitigation is the use of buckle arrestors. The number and had to be designed
Ongoing inspection – Design versus actual

- Fatigue Life of and Installed Pipeline is Primarily Governed By:
 - Span Length
 - Current and Wave Loads
 - Distance to and Size of Adjacent Spans
- Analysis Using Finite Element
 - Determine the Modal Response
- Fatigue Life Calculated Based Upon
 - DNV-RP-F105: Free Spanning Pipelines
- Survey Quality of Free Spans is Important.
Summary

- Pipeline Engineering is diverse and challenging within the subsea sector

- There is a significant shortage of engineers in our field, opportunities are therefore abundant for young engineers

- KW Ltd currently have 2 ENSAM graduates working in their London office – we would be happy to talk to you.

Thank You